首页 | 本学科首页   官方微博 | 高级检索  
     

基于 DPSO 的云工作流任务自适应调度策略
引用本文:贺智明,杨书金. 基于 DPSO 的云工作流任务自适应调度策略[J]. 计算机与现代化, 2013, 0(12): 125-129,137
作者姓名:贺智明  杨书金
作者单位:江西理工大学计算机科学与技术系,江西赣州341000
摘    要:云工作流系统中的任务调度问题属于典型的NP难题,同时由于计算资源异构性、复杂性及用户需求的动态性可能导致系统过载。为了解决或避免此类问题的发生,本文提出一种带动态反馈机制的任务自适应分配方法,并结合离散粒子群优化算法( Discrete Particle Swarm Optimization ,DPSO),利用任务预测执行时间模型来优化任务分配方案。仿真实验表明该方法可保证系统负载平衡,当任务数大于150时能够使任务调度时间最短。

关 键 词:任务调度  动态反馈  负载平衡  离散粒子群算法

Self-adaptive Scheduling Strategy of Cloud Workflow Task Based on DPSO
HE Zhi-ming,YANG Shu-jin. Self-adaptive Scheduling Strategy of Cloud Workflow Task Based on DPSO[J]. Computer and Modernization, 2013, 0(12): 125-129,137
Authors:HE Zhi-ming  YANG Shu-jin
Affiliation:(Department of Computer Science and Technology, Jiangxi University of Science and Technology, Ganzhou 341000, China)
Abstract:The task scheduling in cloud workflow system is a typical NP-complete problem , and the heterogeneity of computing resource and the complexity and dynamics of the requirement may lead to system overloads .We present a self-adaptive task scheduling model which adops Discrete Particle Swarm Optimization algorithm to schedule tasks to virtual machines .Simulation results show that the proposed strategy guarantees a good load balance and achieves shorter scheduling time when the number of tasks is more than 150.
Keywords:task scheduling  dynamic feedback  load balance  discrete particle swarm optimization
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号