首页 | 本学科首页   官方微博 | 高级检索  
     


Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field
Authors:Xi Li  Annie Gagnoud  Yves Fautrelle  Zhongming Ren  Rene Moreau  Yudong Zhang  Claude Esling
Affiliation:1. Department of Material Science and Engineering, Shanghai University, 200072 Shanghai, People’s Republic of China;2. SIMAP-EPM-Madylam/CNRS, ENSHMG, BP 95, 38402 St. Martin d’Heres Cedex, France;3. LETAM, CNRS-UMR 7078, University of Metz, 57045 Metz, France
Abstract:The effects of strong magnetic fields on the columnar-to-equiaxed transition (CET) have been investigated experimentally. Six alloys have been directionally solidified at low growth speeds (1–10 μm s?1) under magnetic fields up to 10 T. Experimental results show that the application of a strong magnetic field causes a dendrite fragmentation and then the CET. The thermoelectric magnetic force acting on cells/dendrites and equiaxed grains in the mushy zone has been studied numerically. Numerical results reveal that the value of the thermoelectric magnetic force increases as the magnetic field intensity and the temperature gradient increase. A torque is created on cells/dendrites and equiaxed grains. This torque breaks cells/dendrites and drives the rotation of equiaxed grains. The rotation of equiaxed grains in the mushy zone will further destroy cells/dendrites. Thus, with the increase of the magnetic field intensity and the temperature gradient, the volume fraction of equiaxed grains in front of columnar dendrites increases. When the magnetic field intensity and the temperature gradient reach a critical value, the growth of columnar dendrites is blocked and the CET then occurs. The present work may initiate a new method of inducing the CET via an applied strong magnetic field during directional solidification.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号