首页 | 本学科首页   官方微博 | 高级检索  
     

基于云平台地图的侦察机器人室外自主导航
引用本文:包加桐,姚小梅,缪露,唐鸿儒,宋爱国. 基于云平台地图的侦察机器人室外自主导航[J]. 控制工程, 2020, 27(6): 941-946. DOI: 10.14107/j.cnki.kzgc.20180232
作者姓名:包加桐  姚小梅  缪露  唐鸿儒  宋爱国
作者单位:东南大学仪器科学与工程学院,江苏南京210096;扬州大学电气与能源动力工程学院,江苏扬州225300;扬州大学电气与能源动力工程学院,江苏扬州225300;东南大学仪器科学与工程学院,江苏南京210096
基金项目:江苏省博士后基金;国家自然科学基金;江苏省研究生科研与实践创新计划项目
摘    要:针对未知室外大尺度范围环境中的侦察机器人全局自主导航问题,提出了一种基于云平台地图路径规划的全局导航控制方法。首先对侦察机器人进行运动建模,采用扩展卡尔曼滤波算法融合GPS、里程计、电子罗盘和惯性测量单元等传感器信息实现机器人的全局定位;其次利用开放软件开发包的云平台地图来自动规划或手动规划,生成机器人从当前位置至设定目标位置的关键路径点序列;最后将机器人与关键路径点的距离及偏航角作为输入,设计了全局导航控制器控制机器人调整其航向和速度依次通过关键路径点直至到达目标。在不同环境中开展了机器人全局自主导航仿真和实验,结果表明提出的方法能够有效地引导机器人经过多个分岔路口,可靠地完成室外环境下的全局自主导航任务。

关 键 词:侦察机器人  全局自主导航  机器人定位  云平台地图  路径规划

Autonomous Outdoor Navigation for Reconnaissance Robot Based on Cloud Platform Map
BAO Jia-tong,YAO Xiao-mei,MIAO Lu,TANG Hong-ru,SONG Ai-guo. Autonomous Outdoor Navigation for Reconnaissance Robot Based on Cloud Platform Map[J]. Control Engineering of China, 2020, 27(6): 941-946. DOI: 10.14107/j.cnki.kzgc.20180232
Authors:BAO Jia-tong  YAO Xiao-mei  MIAO Lu  TANG Hong-ru  SONG Ai-guo
Affiliation:(School of Instrument Science and Engineering,Southeast University,Nanjing 210096,China;China School of Electrical and Energy Power Engineering,Yangzhou University,Yangzhou 225300,China)
Abstract:To address the problem of autonomous navigation of the reconnaissance robot in unknown large-scale outdoor environments, a global navigation control method based on cloud map is proposed. Firstly, the kinematic model of the reconnaissance robot is built. The extended Kalman filter(EKF) algorithm is then employed to estimate the robot position by fusing the sensory information coming from GPS receiver, odometer, compass and inertial measurement unit(IMU). Secondly, by using the open SDK cloud platform maps, a sequence of key waypoints could be autonomously or manually planned. Finally, taking the distance and the drift angle to the next key waypoint as input, the global navigation controller is designed to navigate the robot with proper heading and velocity, aiming at achieving the destination through moving toward the key waypoints sequentially. Simulations and experiments of autonomous robot navigation are performed in different environments. The results show that the proposed approach can effectively pilot the robot moving through multiple road intersections, and make the robot complete the global autonomous outdoor navigation task reliably.
Keywords:Reconnaissance robot  global autonomous navigation  robot localization  cloud platform map  path planning
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号