首页 | 本学科首页   官方微博 | 高级检索  
     


Structural assessment of microvascular self-healing laminates using progressive damage finite element analysis
Authors:Alex TT Nguyen  Adrian C Orifici
Affiliation:1. SLAC National Accelerator Laboratory, Menlo Park, CA, United States
Abstract:This paper presents a progressive damage analysis methodology to numerically analyse the effect of microvascular open channels on the structural properties of self-healing fibre–polymer laminates. The tensile and compression properties of self-healing carbon–epoxy laminates containing microvascular systems are analysed using finite element models which consider progressive in-plane ply damage and intra-ply damage (matrix and delamination cracking). The models predict with good accuracy (often within 5%) the stiffness and strength of laminates containing circular or elliptical microvascular channels of different sizes and orientations. The model calculates a progressive reduction in structural properties with increasing size of microvascular channels due to increased ply waviness, which was confirmed using experimental property data. The model also predicts the location and progression of damage under increasing tensile or compression loading to final failure. The model has application as a tool for the design of microvascular systems in self-healing composites used for structural applications.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号