首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征选择和XGBoost的风电机组故障诊断
引用本文:靳志杰,霍志红,许昌,郭宏宇,周华建. 基于特征选择和XGBoost的风电机组故障诊断[J]. 可再生能源, 2021, 39(3): 353-358
作者姓名:靳志杰  霍志红  许昌  郭宏宇  周华建
作者单位:河海大学能源与电气学院,江苏南京211100;河海大学能源与电气学院,江苏南京211100;河海大学能源与电气学院,江苏南京211100;河海大学能源与电气学院,江苏南京211100;河海大学能源与电气学院,江苏南京211100
基金项目:国家自然科学基金项目(U1865101);江苏省青年基金项目(BK20180505)。
摘    要:随着风电规模的不断增加,风电机组的运行维护成为研究的热点.针对风电机组的故障诊断问题,文章提出了一种基于特征选择和XGBoost算法的故障诊断方法.该方法采用随机森林的袋外估计进行特征选择,降低了特征选择过程的主观性;以XGBoost算法为基础搭建诊断模型,采用网格搜索和交叉验证对算法进行参数优化.以风电场SCADA实...

关 键 词:风电机组  SCADA数据  XGBoost  故障诊断

Fault diagnosis for wind turbine based on Random Forest and XGBoost
Jin Zhijie,Huo Zhihong,Xu Chang,Guo Hongyu,Zhou Huajian. Fault diagnosis for wind turbine based on Random Forest and XGBoost[J]. Renewable Energy(China), 2021, 39(3): 353-358
Authors:Jin Zhijie  Huo Zhihong  Xu Chang  Guo Hongyu  Zhou Huajian
Affiliation:(College of Energy and Electrical Engineering,Hohai University,Nanjing 211100,China)
Abstract:This paper presents a fault diagnosis model based on Random Forest and eXtreme Gradient Boosting algorithm to reduce the wind turbine failure rate.The out-of-bag estimation of Random Forest was used to select the feature parameters that are highly correlated with common faults to replace the way of subjective feature-selection based on prior knowledge.We trained the eXtreme Gradient Boosting algorithm to construct the fault diagnosis model and optimize its parameters by using grid search algorithm and cross-validation.The model was verified by the actual operating data of a wind farm and it was compared with the traditional machine learning algorithms through the accuracy,AUC value and other indices.The experimental results show that the accuracy of eXtreme Gradient Boosting algorithm is higher than the traditional machine learning algorithm,so the fault diagnosis model can be applied to the engineering application of wind turbine fault diagnosis.
Keywords:wind turbine  SCADA data  XGBoost  fault diagnosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号