首页 | 本学科首页   官方微博 | 高级检索  
     

基于Faster R-CNN的工件螺纹孔目标检测
引用本文:张征凯,齐浪. 基于Faster R-CNN的工件螺纹孔目标检测[J]. 测试科学与仪器, 2021, 12(1): 107-114. DOI: 10.3969/j.issn.1674-8042.2021.01.014
作者姓名:张征凯  齐浪
作者单位:西安建筑科技大学 机电工程学院,陕西 西安 710055
摘    要:为了提高螺纹孔目标检测的准确率,结合双相机视觉系统与Hough变换圆检测算法,提出了一种基于Faster R-CNN的螺纹孔目标检测方法。首先建立了由双相机组成的图像获取系统,通过安置在高处的工业相机采集工件整体图像,利用Hough变换圆检测算法初步筛选出工件上的疑似螺纹孔的位置,并驱动第二个工业相机逐个在近处采集经Hough变换检测出的疑似螺纹孔的局部精确图像。然后,在自建的螺纹孔数据集上训练以ResNet50为基础网络的Faster R-CNN目标检测模型。最后,将螺纹孔处局部图像输入训练好的Faster R-CNN目标检测模型进一步识别并进行定位。实验结果表明,该方法能有效地避免螺纹孔小目标检测,相对于单独使用Hough变换方法或者Faster R-CNN目标检测方法检测螺纹孔,具有更高的识别和定位精度。

关 键 词:目标检测  螺纹孔  深度学习  基于区域的卷积神经网络  HOUGH变换

Object detection of artifact threaded hole based on Faster R-CNN
ZHANG Zhengkai,QI Lang. Object detection of artifact threaded hole based on Faster R-CNN[J]. Journal of Measurement Science and Instrumentation, 2021, 12(1): 107-114. DOI: 10.3969/j.issn.1674-8042.2021.01.014
Authors:ZHANG Zhengkai  QI Lang
Affiliation:(School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China)
Abstract:In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based on Faster region-ased convolutional neural network (Faster R-CNN).First,a dual camera image acquisition system is established.One industrial camera placed at a high position is responsible for collecting the whole image of the workpiece,and the suspected screw hole position on the workpiece can be preliminarily selected by Hough transform detection algorithm.Then,the other industrial camera is responsible for collecting the local images of the suspected screw holes that have been detected by Hough transform one by one.After that,ResNet50-based Faster R-CNN object detection model is trained on the self-built screw hole data set. Finally,the local image of the threaded hole is input into the trained Faster R-CNN object detection model for further identification and location.The experimental results show that the proposed method can effectively avoid small object detection of threaded holes,and compared with the method that only uses Hough transform or Faster RCNN object detection alone,it has high recognition and positioning accuracy.
Keywords:object detection  threaded hole  deep learning  region-based convolutional neural network (Faster R-CNN)  Hough transform
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号