首页 | 本学科首页   官方微博 | 高级检索  
     


Improved numerical method for the Traction Boundary Integral Equation by application of Stokes' theorem
Authors:A. Young
Abstract:This paper concerns the direct numerical evaluation of singular integrals arising in Boundary Integral Equations for displacement (BIE) and displacement gradients (BIDE), and the formulation of a Traction Boundary Integral Equation (TBIE) for solving general elastostatic crack problems. Subject to certain continuity conditions concerning displacements and tractions at the source point, singular integrals in the BIE and the BIDE corresponding to coefficients of displacement and displacement gradients at the source point are shown to be of a form that allows application of Stokes' theorem. All the singular integrals in 3-D BIE and BIDE are reduced to non-singular line integrals, and those in 2-D BIE and BIDE are evaluated in closed form. Remaining terms involve regular integrals, and no references to Cauchy or Hadamard principal values are required. Continuous isoparametric interpolations used on continuous elements local to the source point are modified to include unique displacement gradients at the source point which are compatible with all local tractions. The resulting numerical BIDE is valid for source points located arbitrarily on the boundary, including corners, and a procedure is given for constructing a TBIE from the BIDE. Some example solutions obtained using the present numerical method for the TBIE in 2-D and 3-D are presented. © British Crown Copyright 1997/DERA.
Keywords:traction boundary integral equation  continuous elements  boundary element method  Stokes' theorem  cracks
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号