首页 | 本学科首页   官方微博 | 高级检索  
     


Voigt–Reuss topology optimization for structures with nonlinear material behaviors
Authors:Colby C Swan  Iku Kosaka
Abstract:This work is directed toward optimizing concept designs of structures featuring inelastic material behaviours by using topology optimization. In the proposed framework, alternative structural designs are described with the aid of spatial distributions of volume fraction design variables throughout a prescribed design domain. Since two or more materials are permitted to simultaneously occupy local regions of the design domain, small-strain integration algorithms for general two-material mixtures of solids are developed for the Voigt (isostrain) and Reuss (isostress) assumptions, and hybrid combinations thereof. Structural topology optimization problems involving non-linear material behaviours are formulated and algorithms for incremental topology design sensitivity analysis (DSA) of energy type functionals are presented. The consistency between the structural topology design formulation and the developed sensitivity analysis algorithms is established on three small structural topology problems separately involving linear elastic materials, elastoplastic materials, and viscoelastic materials. The good performance of the proposed framework is demonstrated by solving two topology optimization problems to maximize the limit strength of elastoplastic structures. It is demonstrated through the second example that structures optimized for maximal strength can be significantly different than those optimized for minimal elastic compliance. © 1997 John Wiley & Sons, Ltd.
Keywords:topology optimization  structural optimization  design sensitivity analysis (DSA)  nonlinear structures  mixtures
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号