首页 | 本学科首页   官方微博 | 高级检索  
     


Oxidation Stress as a Mechanism of Aging in Human Erythrocytes: Protective Effect of Quercetin
Authors:Alessia Remigante  Sara Spinelli  Nancy Basile  Daniele Caruso  Giuseppe Falliti  Silvia Dossena  Angela Marino  Rossana Morabito
Affiliation:1.Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy; (A.R.); (S.S.); (N.B.); (A.M.);2.Complex Operational Unit of Clinical Pathology, Papardo Hospital, 98158 Messina, Italy; (D.C.); (G.F.);3.Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
Abstract:Aging is a multi-factorial process developing through a complex net of interactions between biological and cellular mechanisms and it involves oxidative stress (OS) as well as protein glycation. The aim of the present work was to verify the protective role of Quercetin (Q), a polyphenolic flavonoid compound, in a d-Galactose (d-Gal)-induced model of aging in human erythrocytes. The anion-exchange capability through the Band 3 protein (B3p) measured by the rate constant of the SO42− uptake, thiobarbituric acid reactive substances (TBARS) levels—a marker of lipid peroxidation—total sulfhydryl (-SH) groups, glycated hemoglobin (A1c), and a reduced glutathione/oxidized glutathione (GSH-GSSG) ratio were determined following the exposure of erythrocytes to 100 mM d-Gal for 24 h, with or without pre-incubation with 10 µM Q. The results confirmed that d-Gal activated OS pathways in human erythrocytes, affecting both membrane lipids and proteins, as denoted by increased TBARS levels and decreased total sulfhydryl groups, respectively. In addition, d-Gal led to an acceleration of the rate constant of the SO42 uptake through the B3p. Both the alteration of the B3p function and oxidative damage have been improved by pre-treatment with Q, which preferentially ameliorated lipid peroxidation rather than protein oxidation. Moreover, Q prevented glycated A1c formation, while no protective effect on the endogenous antioxidant system (GSH-GSSG) was observed. These findings suggest that the B3p could be a novel potential target of antioxidant treatments to counteract aging-related disturbances. Further studies are needed to confirm the possible role of Q in pharmacological strategies against aging.
Keywords:quercetin   d-Galactose   aging   band 3 protein function   oxidative stress   glycation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号