首页 | 本学科首页   官方微博 | 高级检索  
     


Fault tolerance in cellular automata at high fault rates
Authors:Mark McCann  Nicholas Pippenger  
Affiliation:aDepartment of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08544, USA;bDepartment of Mathematics, Harvey Mudd College, 1250 Dartmouth Avenue, Claremont, CA 91711, USA
Abstract:A commonly used model for fault-tolerant computation is that of cellular automata. The essential difficulty of fault-tolerant computation is present in the special case of simply remembering a bit in the presence of faults, and that is the case we treat in this paper. We are concerned with the degree (the number of neighboring cells on which the state transition function depends) needed to achieve fault tolerance when the fault rate is high (nearly 1/2). We consider both the traditional transient fault model (where faults occur independently in time and space) and a recently introduced combined fault model which also includes manufacturing faults (which occur independently in space, but which affect cells for all time). We also consider both a purely probabilistic fault model (in which the states of cells are perturbed at exactly the fault rate) and an adversarial model (in which the occurrence of a fault gives control of the state to an omniscient adversary). We show that there are cellular automata that can tolerate a fault rate 1/2−ξ (with ξ>0) with degree O((1/ξ2)log(1/ξ)), even with adversarial combined faults. The simplest such automata are based on infinite regular trees, but our results also apply to other structures (such as hyperbolic tessellations) that contain infinite regular trees. We also obtain a lower bound of Ω(1/ξ2), even with only purely probabilistic transient faults.
Keywords:Fault tolerance  Cellular automata  Hyperbolic tessellation  Information theory
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号