首页 | 本学科首页   官方微博 | 高级检索  
     


First-Principles Investigation of Electronic Structure Features of TbOFeAs Compound
Authors:A Laref
Affiliation:1. Department of Physics and Astronomy, College of Science King Saud University, Riyadh, 11451, Saudi Arabia
2. Department of Physics National, Taiwan University, 106, Taipei, Taiwan
Abstract:We report a theoretical investigation on the electronic and magnetic properties of rare-earth pnictide parent compound, such as TbOFeAs. Employing first-principles method supplemented by the local spin density approximation (LSDA), we discuss the electronic structure with the incorporation of the role of Coulomb on-site repulsion (U) of Tb 4f states as well as the spin-orbit (SO) coupling on the magnetic and nonmagnetic phases. For ferromagnetic (FM) and antiferromagnetic (AFM) phases, we have determined the spin and orbital magnetic moments of Tb ions and confer the significance of the spin-orbit interaction of Tb 4f states in this parent compound. In the FM state, the reduction of Fe moment is about a factor of 3.5 with respect to AFM configuration. The most energetically favorable state is AFM configuration. Our theoretical findings surmise that the magnetic moments on Fe sites carry an AFM order. Based on LSDA + U + SO approximation, we infer that the Tb magnetic moments also carry an AFM order, albeit the spin Tb sites in TbO layer possess the same orientation as the Fe spins in FeAs layer. With the incorporation of on-site Coulomb repulsion and spin-orbit interaction in AFM state, the Fe 3d states are large near the Fermi level and this phase is illustrating a metallic behavior. Moreover, the Fermi surface topology and nesting features are presented.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号