首页 | 本学科首页   官方微博 | 高级检索  
     

基于时空相关性的风电功率超短期自适应预测方法
引用本文:赵永宁,李 卓,叶 林,裴 铭,宋旭日,罗雅迪,於益军. 基于时空相关性的风电功率超短期自适应预测方法[J]. 电力系统保护与控制, 2023, 51(6): 94-105
作者姓名:赵永宁  李 卓  叶 林  裴 铭  宋旭日  罗雅迪  於益军
作者单位:1.中国农业大学信息与电气工程学院,北京 100083;2.中国电力科学研究院有限公司,北京 100192
基金项目:国家自然科学基金项目资助(U22B20117, 52207144);国家电网公司总部科技项目资助(5108- 202155037A-0-0-00);中央高校基本科研业务费专项资金资助(2022TC087)
摘    要:为了充分并有效地利用大量风电场之间的时空相关性,在提高风电功率预测精度的同时保障计算效率,提出一种基于时空相关性的风电功率超短期自适应预测方法。以向量自回归模型为基础,对区域内大量风电场之间的时空相关关系进行表征。为减小因空间信息冗余造成的目标风电场预测模型过拟合,引入稀疏化建模技术来优化参考风电场数据的权重系数。此外,采用递归估计算法对预测模型进行自适应训练。根据最新实测功率数据实时更新预测模型系数,不仅可以动态适应预测环境的变化,还可以分散计算负担。采用某区域内100个风电场的实际数据对预测方法进行分析和验证。结果表明,相对于对比方法,所提出的预测方法具有更高的预测精度,且能够降低对密集型计算资源的需求。

关 键 词:风电功率预测;空间相关性;自适应;稀疏性;风电场
收稿时间:2022-06-06
修稿时间:2022-09-19

A very short-term adaptive wind power forecasting method based on spatio-temporal correlation
ZHAO Yongning,LI Zhuo,YE Lin,PEI Ming,SONG Xuri,LUO Yadi,YU Yijun. A very short-term adaptive wind power forecasting method based on spatio-temporal correlation[J]. Power System Protection and Control, 2023, 51(6): 94-105
Authors:ZHAO Yongning  LI Zhuo  YE Lin  PEI Ming  SONG Xuri  LUO Yadi  YU Yijun
Affiliation:1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;2. China Electric Power Research Institute Co., Ltd., Beijing 100192, China
Abstract:To improve wind power forecasting (WPF) accuracy and ensure computational efficiency by fully and effectively using the spatio-temporal correlations between wind farms, a very short-term adaptive WPF method based on spatio-temporal correlation is proposed. Vector autoregression is applied as a basic model to characterize the spatio-temporal correlation. To avoid the over-fitting problem of a target wind farm caused by redundant spatial information, sparse modeling is adopted to optimize the weights of data from reference wind farms. The forecasting model is trained by a recursive estimation algorithm. It updates the forecasting model in real-time according to the latest wind power measurements. The model can adapt to varying environments and reduce the computational burden. A case study is carried out using real data from 100 wind farms over a region. Results show that, in comparison with a set of benchmark models, the proposed method can achieve much higher forecasting accuracy while reducing the requirement for intensive computational resources.
Keywords:wind power forecasting   spatial correlation   self-adaptation   sparsity   wind farm
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号