首页 | 本学科首页   官方微博 | 高级检索  
     


The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading
Authors:M. J. P. Biggs  R. G. Richards  N. Gadegaard  C. D. W. Wilkinson  M. J. Dalby
Affiliation:(1) Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK;(2) AO Research Institute, AO Foundation, Clavadelerstrasse 8, Davos Platz, Switzerland
Abstract:Current understanding of the mechanisms involved in ossesoinegration following implantation of a biomaterial has led to an emphasis being placed on the modification of material topography to control interface reactions. Recent studies have inferred nanoscale topography as an important mediator of cell adhesion and differentiation. Biomimetic strategies in orthopaedic research aim to exploit these influences to regulate cellular adhesion and subsequent bony tissue formation. Here experimental topographies of nanoscale pits demonstrating varying order have been fabricated by electron-beam lithography in (poly)carbonate. Osteoblast adhesion to these nanotopographies was ascertained by quantification of the relation between adhesion complex formation and total cell area. This study is specifically concerned with the effects these nanotopographies have on adhesion formation in S-phase osteoblasts as identified by BrdU incorporation. Nanopits were found to reduce cellular spreading and adhesion formation.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号