首页 | 本学科首页   官方微博 | 高级检索  
     


The effect of anode axial position on the performance of a miniaturized cylindrical Hall thruster with a cusp-type magnetic field
Affiliation:1. Advanced Space Propulsion and Energy Laboratory (ASPEL), School of Astronautics, Beihang University, Beijing 100191, People's Republic of China 2. Aircraft and Propulsion Laboratory, Ningbo Institute of Technology, Beihang University, Ningbo 315832, People's Republic of China
Abstract:A 200 W cylindrical Hall thruster with a cusp-type magnetic field was proposed, manifesting convergent plume and high specific impulse. In this paper, a series of ring-shaped anodes are designed and the influence of anode axial position on the performance of CHT with a cusp-type magnetic field is studied. The experimental results indicate that the thruster keeps stable operation at the condition of 140–270 W discharge power. When the anode moves axially towards the upstream cusp field, the thrust enhances from 6.5 mN to 7.6 mN and specific impulse enhances from 1658 s to 1939 s significantly. These improvements of thruster performance should be attributed to the enhancement of current utilization, propellant utilization and acceleration efficiency. According to the analyses on the discharge characteristics, it is revealed that as the anode moves upstream, the electron transport path could be extended, the magnetic field in this extended path could impede electron cross-field transport and facilitate the ionization intensity, yielding to the enhancement of current utilization and propellant utilization efficiency. Moreover, along with this enhancement of upstream ionization at the given anode flow rate, the main ionization region is thought to move upstream and then separate more apparently from the acceleration region, which has been demonstrated by the narrowing of ion energy distribution function shape. This change in acceleration region could decrease the ion energy loss and enhance acceleration efficiency. This work is beneficial for optimizing the electrode structure of thruster and recognize the ionization and acceleration process under the cusp magnetic field.
Keywords:performance  ionization characteristics  acceleration characteristics  cylindrical Hall  thruster  anode axial position  
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号