首页 | 本学科首页   官方微博 | 高级检索  
     

自适应标记关联与实例关联诱导的缺失多视图弱标记学习
引用本文:查思明1,鲍庆森1,骆健1,2,陈蕾1,2. 自适应标记关联与实例关联诱导的缺失多视图弱标记学习[J]. 智能系统学报, 2022, 17(4): 670-679. DOI: 10.11992/tis.202106017
作者姓名:查思明1  鲍庆森1  骆健1  2  陈蕾1  2
作者单位:1. 南京邮电大学 计算机学院,江苏 南京 210003;2. 南京邮电大学 江苏省大数据安全与智能处理重点实验室,江苏 南京 210003
摘    要:针对多视图多标记学习中视图不完整和标记不完整问题,提出一种自适应标记关联与实例关联诱导的缺失多视图弱标记学习模型。模型假设样本各视图特征基于一个共享表示,通过不同映射得到。首先通过嵌入指示矩阵进行矩阵分解,充分利用已有的不完整多视图弱标记数据,然后引入图论中学习标准拉普拉斯矩阵的技术来刻画标记关联关系、实例关联关系,从而在模型里嵌入流形正则化思想,使学到的潜在共享表示以及分类器更加合理,最后在4个多视图多标记数据集上实验。实验结果表明,所提方法能够有效解决不完整多视图弱标记学习问题。

关 键 词:多视图学习  多标记学习  图学习  流形正则化  弱监督学习  矩阵分解  标记缺失  视图缺失

Adaptive label correlation and instance correlation guided incomplete multiview weak label learning
ZHA Siming1,BAO Qingsen1,LUO Jian1,2,CHEN Lei1,2. Adaptive label correlation and instance correlation guided incomplete multiview weak label learning[J]. CAAL Transactions on Intelligent Systems, 2022, 17(4): 670-679. DOI: 10.11992/tis.202106017
Authors:ZHA Siming1  BAO Qingsen1  LUO Jian1  2  CHEN Lei1  2
Affiliation:1. School of Computer Science, Nanjing University of Post and Telecommunication, Nanjing 210003, China;2. Jiangsu Key Laboratory of Big data Security & Intelligent Processing, Nanjing University of Post and Telecommunications, Nanjing 210003, China
Abstract:Focusing on the problem of incomplete view and label in multiview multilabel learning, the paper proposes a model called adaptive label correlation and instance correlation guided incomplete multiview weak label learning. The model assumes each view of the instance is obtained from a common representation through different mappings. Firstly, matrix factorization is used by embedding the indicator matrix to make full use of the existing incomplete multiview weak label data and then introduces the technology of learning the standard Laplacian matrix in graph theory to describe the label correlation and instance correlation. Therefore, embedding manifold regularization in the model to make the learned common representation and classifier more reasonable. Finally, four multiview multilabel datasets were conducted in a series of experiments. The experimental results show that the proposed model can solve the task of incomplete multiview weak label learning effectively.
Keywords:multi-view learning   multi-label learning   graph learning   manifold regularization   weakly supervised learning   matrix factorization   missing labels   missing views
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号