首页 | 本学科首页   官方微博 | 高级检索  
     

无人机视角下的多车辆跟踪算法研究
引用本文:胡硕,王洁,孙妍,周思恩,姚美玉. 无人机视角下的多车辆跟踪算法研究[J]. 智能系统学报, 2022, 17(4): 798-805. DOI: 10.11992/tis.202108014
作者姓名:胡硕  王洁  孙妍  周思恩  姚美玉
作者单位:燕山大学 电气工程学院,河北 秦皇岛 066004
摘    要:针对无人机视频中存在目标密集、运动噪声强而导致跟踪性能显著下降的问题,提出了一种改进YOLOv3的车辆检测算法及一种基于深度度量学习的多车辆跟踪算法。针对车辆检测的精度与实时性问题,采用深度可分离卷积网络MobileNetv3作为特征提取网络实现网络结构轻量化,同时采用CIoU Loss作为边框损失函数对网络进行训练。为了在多目标跟踪过程中提取到更具判别力的深度特征,提出了一种基于深度度量学习的多车辆跟踪算法,实验证明,本文提出的算法有效改善车辆ID跳变问题,速度上满足无人机交通视频下车辆跟踪的实时性要求,达到17 f/s。

关 键 词:车辆检测  目标跟踪  无人机视频  特征提取  轻量级网络  深度特征  损失函数  深度度量学习

Research on multi-vehicle tracking algorithm from the perspective of UAV
HU Shuo,WANG Jie,SUN Yan,ZHOU Sien,YAO Meiyu. Research on multi-vehicle tracking algorithm from the perspective of UAV[J]. CAAL Transactions on Intelligent Systems, 2022, 17(4): 798-805. DOI: 10.11992/tis.202108014
Authors:HU Shuo  WANG Jie  SUN Yan  ZHOU Sien  YAO Meiyu
Affiliation:School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
Abstract:Aiming at the decline of tracking performance suffering from dense targets and strong motion noise in UAV video, we propose a vehicle detection algorithm based on improved YOLOv3 and a multi-vehicle tracking algorithm based on deep metric learning. To improve the vehicle detection system’s accuracy and real-time performance, a deep separable convolution network, MobileNetv3, is adopted as the feature extraction network to realize a lightweight network structure, and the CIoU Loss is used as the frame loss function to train the network. A multi-vehicle tracking algorithm based on depth metric learning is proposed to extract more discriminative deep features during multi-target tracking. Experiments reveal that the algorithm proposed in this paper effectively improves the problem of target ID jump and meets the real-time requirement of vehicle tracking in UAV traffic video, reaching 17 FPS.
Keywords:vehicle detection   object tracking   UAV video   feature extraction   lightweight network   deep feature   loss function   deep metric learning
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号