摘 要: | 针对无人机视频中存在目标密集、运动噪声强而导致跟踪性能显著下降的问题,提出了一种改进YOLOv3的车辆检测算法及一种基于深度度量学习的多车辆跟踪算法。针对车辆检测的精度与实时性问题,采用深度可分离卷积网络MobileNetv3作为特征提取网络实现网络结构轻量化,同时采用CIoU Loss作为边框损失函数对网络进行训练。为了在多目标跟踪过程中提取到更具判别力的深度特征,提出了一种基于深度度量学习的多车辆跟踪算法,实验证明,本文提出的算法有效改善车辆ID跳变问题,速度上满足无人机交通视频下车辆跟踪的实时性要求,达到17 f/s。
|