首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation study on electron heating characteristics in magnetic enhancement capacitively coupled plasmas with a longitudinal magnetic field
Abstract:The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and numerical calculations. It is found that the longitudinal magnetic field can affect the heating by changing the level of the pressure heating along the longitudinal direction and that of the Ohmic heating along the direction which is perpendicular to both driving electric field and the applied transverse magnetic field, and a continuously increased longitudinal magnetic field can induce pressure heating to become dominant. Moreover, the electron temperature as well as proportion of some low energy electrons will increase if a small longitudinal magnetic field is introduced, which is attributed to the increased average electron energy. We believe that the research will provide guidance for optimizing the magnetic field configuration of some discharge systems having both transverse and longitudinal magnetic field.
Keywords:capacitively coupled plasma   longitudinal magnetic field   electron heating   PIC/MCC simulation  
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号