首页 | 本学科首页   官方微博 | 高级检索  
     


Overview of runaway current suppression and dissipation on J-TEXT tokamak
Affiliation:1. International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China 2. School of Electrical Engineering & Automation, Jiangsu Normal University, Xuzhou 221116, People's Republic of China
Abstract:The main works on disruption mitigation including suppression and mitigation of runaway current on the J-TEXT tokamak are summarized in this paper. Two strategies for the mitigation of runaway electron (RE) beams are applied in experiments. The first strategy enables the REs to be completely suppressed by means of supersonic molecular beam injection and resonant magnetic perturbation which can enhance RE loss, magnetic energy transfer which can reduce the electric field, and secondary massive gas injection (MGI) which can increase the collisional damping. For the second strategy, the runaway current is allowed to form but should be dissipated or soft landed within tolerance. It is observed that the runaway current can be significantly dissipated by MGI, and the dissipation rate increases with the injected impurity particle number and eventually stabilizes at 28 MA s?1. The dissipation rate of the runaway current can be up to 3 MA s?1 by ohmic field. Shattered pellet injection has been chosen as the main disruption mitigation method, which has the capability of injecting material deeper into the plasma for higher density assimilation when compared to MGI. Moreover, simulation works show that the RE seeds in the plasma are strongly influenced under different phases and sizes of 2/1 mode locked islands during thermal quench. The robust runaway suppression and runaway current dissipation provide an important insight on the disruption mitigation for future large tokamaks.
Keywords:
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号