首页 | 本学科首页   官方微博 | 高级检索  
     

基于图卷积网络的特定方面情感分析
引用本文:闫金凤,邵新慧. 基于图卷积网络的特定方面情感分析[J]. 中文信息学报, 2022, 36(10): 135-144
作者姓名:闫金凤  邵新慧
作者单位:东北大学 理学院,辽宁 沈阳 110000
摘    要:方面级情感分析是细粒度情感分析的一个基本子任务,旨在预测文本中给定方面或实体的情感极性。语义信息、句法信息及其交互信息对于方面级情感分析是极其重要的。该文提出一种基于图卷积和注意力的网络模型(CA-GCN)。该模型主要分为两部分,一是将卷积神经网络结合双向LSTM获取的丰富特征表示与图卷积神经网络掩码得到的方面特征表示进行融合;二是采用两个多头交互注意力融合方面、上下文和经图卷积神经网络得到的特征信息,而后接入多头自注意力来学习信息交互后句子内部的词依赖关系。与ASGCN模型相比,该模型在三个基准数据集(Twitter、Lap14和Rest14)上准确率分别提升1.06%、1.62%和0.95%,F1值分别提升1.07%、2.60%和1.98%。

关 键 词:特定方面情感分析  图卷积网络  注意力机制
收稿时间:2020-11-19

Aspect-Level Sentiment Analysis Based on Graph Convolutional Network
YAN Jinfeng,SHAO Xinhui. Aspect-Level Sentiment Analysis Based on Graph Convolutional Network[J]. Journal of Chinese Information Processing, 2022, 36(10): 135-144
Authors:YAN Jinfeng  SHAO Xinhui
Affiliation:College of Science, Northeastern University, Shenyang, Liaoning 110000, China
Abstract:Aspect-level sentiment analysis is a fundamental subtask of fine-grained sentiment analysis to predict the sentiment polarities of the given aspects or entities in text. The semantic information, syntactic information and their internteractive information are crucial to aspect-level sentiment analysis. This paper proposes a CA-GCN model based on graph convolution and attention. The model is mainly divided into two parts. First, the model integrates the rich feature representation obtained by CNN and Bi-LSTM with the aspect-oriented features obtained through graph convolution. Second ,the model applied two multi-head interactive attention to integrate the aspect, the context and the feature information obtained by the graph convolution, which is then fed into a multi-head self-attention to learn the dependency relationship among words in the sentence. Compared with the ASGCN model, the accuracy of the model on the datasets of Twitter,Lap14 and Rest14 is improved by 1.06%,1.62% and 0.95%, and the F1 score is improves by 1.07%,2.60% and 1.98%,respectively.
Keywords:aspect-level sentiment analysis    graph convolutional network (GCN)    attention mechanism  
点击此处可从《中文信息学报》浏览原始摘要信息
点击此处可从《中文信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号