首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进的基于深度神经网络的偏微分方程求解方法
引用本文:陈新海,刘杰,万仟,龚春叶. 一种改进的基于深度神经网络的偏微分方程求解方法[J]. 计算机工程与科学, 2022, 44(11): 1932-1940
作者姓名:陈新海  刘杰  万仟  龚春叶
作者单位:(1.国防科技大学并行与分布处理国家重点实验室,湖南 长沙 410073;2.复杂系统软件工程湖南省重点实验室,湖南 长沙 410073)
基金项目:国家重点研发计划(2021YFB0300101);“国家数值风洞”工程基础研究课题(NNW2019ZT5-A10)
摘    要:偏微分方程求解是计算流体力学等科学与工程领域中数值分析的计算核心。由于物理的多尺度特性和对离散网格质量的敏感性,传统的数值求解方法通常包含复杂的人机交互和昂贵的网格剖分开销,限制了其在许多实时模拟和优化设计问题上的应用效率。提出了一种改进的基于深度神经网络的偏微分方程求解方法TaylorPINN。该方法利用深度神经网络的万能逼近定理和泰勒公式的函数拟合能力,实现了无网格的数值求解过程。在Helmholtz、Klein-Gordon和Navier-Stokes方程上的数值实验结果表明,TaylorPINN能够很好地拟合计算域内时空点坐标与待求函数值之间的映射关系,并提供了准确的数值预测结果。与常用的基于物理信息神经网络方法相比,对于不同的数值问题,TaylorPINN将预测精度提升了3~20倍。

关 键 词:偏微分方程  数值分析  神经网络  泰勒公式  无网格  
收稿时间:2021-06-28
修稿时间:2021-11-20

An improved method for solving partialdifferential equations using deep neural networks
CHEN Xin-hai,LIU Jie,WAN Qian,GONG Chun-ye. An improved method for solving partialdifferential equations using deep neural networks[J]. Computer Engineering & Science, 2022, 44(11): 1932-1940
Authors:CHEN Xin-hai  LIU Jie  WAN Qian  GONG Chun-ye
Affiliation:(1.Science and Technology on Parallel and Distributed Processing Laboratory,National University of Defense Technology,Changsha 410073;2.Laboratory of Software Engineering for Complex Systems,Changsha 410073,China)
Abstract:Solving partial differential equations plays a vital role of numerical analysis in scientific and engineering fields such as computational fluid dynamics. Due to the multi-scale nature of physics and sensitivity to the quality of the discrete mesh, traditional numerical methods often require complex human-computer interaction and expensive meshing overhead, which limit their application to many real-time simulation and optimal design problems. This paper proposes an improved neural network-based method for solving partial differential equations, named TaylorPINN. It utilizes the universal approximation theorem of neural networks and the function-fitting capability of Taylor formula, and provides a mesh-free numerical solving process. Numerical experimental results on Helmholtz, Klein-Gordon, and Navier-Stokes equations demonstrate that TaylorPINN is able to approximate the underlying mapping relations between the coordinate inputs and quantities of interest, yielding an accurate prediction result. Compared with the widely used physics-informed neural network method, TaylorPINN improves the prediction accuracy by a factor of 3~20x across different numerical problems.
Keywords:partial differential equation  numerical analysis  deep neural network  Taylor formula  mesh-free  
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号