首页 | 本学科首页   官方微博 | 高级检索  
     


Inducible NO synthase II and neuronal NO synthase I are constitutively expressed in different structures of guinea pig skeletal muscle: implications for contractile function
Authors:I Gath  EI Closs  U G?dtel-Armbrust  S Schmitt  M Nakane  I Wessler  U F?rstermann
Affiliation:Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany.
Abstract:The expression of NOS isoforms was studied in guinea pig skeletal muscle at the mRNA and protein level, and the effect of NO on contractile response was examined. Ribonuclease protection analyses demonstrated NOS I and NOS II mRNAs in diaphragm and gastrocnemius muscle. In Western blots, NOS I and NOS II immunoreactivities were found in the particulate but not the soluble fraction of skeletal muscle. NOS activity was found almost exclusively in the particulate fraction. About 50% of this activity was Ca2+ independent. In immunohistochemistry, the anti-NOS I antibody stained distinct membrane regions of muscle fibers. The most intense staining was seen in neuromuscular endplates identified by labeling with alpha-bungarotoxin. The anti-NOS II antibody labeled muscle fibers that contained alkali-labile myosin ATPase (type I fibers). NOS II was located to intracellular structures and was also seen in "specific pathogen-free" animals. Pretreatment of guinea pigs with bacterial lipopolysaccharide (LPS) markedly intensified NOS II staining. Significant NOS III immunoreactivity was detected only in vascular endothelium. In functional experiments, tetanic muscle contractions were induced in diaphragm and gastrocnemius muscle by electrical stimulation of the innervating nerves. Pretreatment of guinea pigs with LPS or addition of S-nitroso-N-acetyl-D,L-penicillamine to the organ bath markedly decreased tetanic contractions. N(G)-nitro-L-arginine, on the other hand, increased contractile force and reversed the effect of LPS. Our data indicate that NOS II and NOS I are expressed in different structures of skeletal muscle and are involved in the regulation of contractile response.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号