首页 | 本学科首页   官方微博 | 高级检索  
     


Torsion of a fiber reinforced hyperelastic cylinder for which the fibers can undergo dissolution and reassembly
Authors:Hasan Demirkoparan  Alan Wineman
Affiliation:a Carnegie Mellon University in Qatar, P.O. Box 24866, Doha, Qatar
b Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
c Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
Abstract:In previous work, the authors have developed a theory for treating microstructural changes in fiber reinforced hyperelastic materials. In this theory, fibers undergo dissolution as a result of increasing elongation and then reassemble in a direction defined as part of the model. Processes in which the fibers reassemble in the direction of maximum principal stretch of the matrix were specifically considered. This model was previously illustrated for various cases of homogeneous deformation. The present work studies the implications of the model during the non-homogeneous deformation of axial stretch and torsion of a circular solid cylinder composed of an isotropic matrix and families of helically wound fibers. It is shown that the process of fiber dissolution and reassembly produces complex morphological changes in the fibrous structure and hence, in the response of the cylinder. Such events can give rise to an outer layer of material in which the fibers have undergone dissolution and reassembly. The interface between this region and the as yet unaltered core material can then move radially inward as axial stretch and/or twist increase. Gradual reassembly of the fibers with increasing stretch and twist changes their contributions to the torque and axial force and their helical orientation. Different sequences of axial stretch and twist result in different morphologies in the fibrous structure.
Keywords:Hyperelasticity  Fiber reinforcement  Fiber dissolution  Fiber reassembly
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号