首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of nonlinear, dynamic coupled thermoviscoelasticity problems by the finite element method
Authors:J T Oden and W H Armstrong
Affiliation:

The University of Alabama, Huntsville, Alabama, U.S.A.

Abstract:This investigation deals with the numerical solution of a class of nonlinear problem in transient, coupled, thermoviscoelastidty. Equations of motion and heat conduction are derived for finite elements of thermomechanically simple materials and these are adapted to special classes of thermorheologically simple materials. The analysis involves the solution of large systems of nonlinear integrodifferential equations in the nodal displacements and temperatures and their histories. As a representative example, the general equations are applied to the problem of transient response of a thick-walled hollow cylinder subjected to time-varying internal and external pressures, temperatures, and heat fluxes. The integration scheme used to solve the nonlinear equations employs a linear acceleration assumption, representation of nonlinear integral terms by Simpson's rule, and the iterative solution of large systems of nonlinear algebraic equations at each reduced time step by the Newton-Raphson method. Various numerical results are given and are compared with the linearized, isothermal, and quasi-static solutions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号