首页 | 本学科首页   官方微博 | 高级检索  
     


Real-time data analytics and event detection for IoT-enabled communication systems
Affiliation:1. Department of Computer, College of Mechatronic, Karaj Branch, Islamic Azad University, Alborz, Iran;2. Natural Language Processing (NLP) Research Lab., Faculty of Electrical and Computer Engineering, Shahid Beheshti University, G. C., Tehran, Iran
Abstract:Enterprise Communication Systems are designed in such a way to maximise the efficiency of communication and collaboration within the enterprise. With users becoming mobile, the Internet of Things (IoT) can play a crucial role in this process, but is far from being seamlessly integrated into modern online communications. In this paper, we present a semantic infrastructure for gathering, integrating and reasoning upon heterogeneous, distributed and continuously changing data streams by means of semantic technologies and rule-based inference. Our solution exploits semantics to go beyond today’s ad-hoc integration and processing of heterogeneous data sources for static and streaming data. It provides flexible and efficient processing techniques that can transform low-level data into high-level abstractions and actionable knowledge, bridging the gap between IoT and online Enterprise Communication Systems. We document the technologies used for acquisition and semantic enrichment of sensor data, continuous semantic query processing for integration and filtering, as well as stream reasoning for decision support. Our main contributions are the following, (i) we define and deploy a semantic processing pipeline for IoT-enabled Communication Systems, which builds upon existing systems for semantic data acquisition, continuous query processing and stream reasoning, detailing the implementation of each component of our framework; (ii) we present a rich semantic information model for representing and linking IoT data, social data and personal data in the Enterprise Communication scenario, by reusing and extending existing standard semantic models; (iii) we define and develop an expressive stream reasoning component as part of our framework, based on continuous query processing and non-monotonic reasoning for semantic streams, (iv) we conduct experiments to comparatively evaluate the performance of our data acquisition and semantic annotation layer based on OpenIoT, and the performance of our expressive reasoning layer in the scenario of Enterprise Communication.
Keywords:RDF stream processing  Stream federation  Internet of Things (IoT)  Communication systems  Linked data  Stream reasoning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号