首页 | 本学科首页   官方微博 | 高级检索  
     


Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers
Authors:H M Badr

S C R Dennis and P J S Young

Affiliation:

Department of Mechanical Engineering, University of Petroleum and Minerals, Dhahran, Saudi Arabia

Department of Applied Mathematics, The University of Western Ontario, London, Canada

Abstract:Results of calculations of the steady and unsteady flows past a circular cylinder which is rotating with constant angular velocity and translating with constant linear velocity are presented. The motion is assumed to be two-dimensional and to be governed by the Navier-Stokes equations for incompressible fluids. For the unsteady flow, the cylinder is started impulsively from rest and it is found that for low Reynolds numbers the flow approaches a steady state after a large enough time. Detailed results are given for the development of the flow with time for Reynolds numbers 5 and 20 based on the diameter of the cylinder. For comparison purposes the corresponding steady flow problem has been solved. The calculated values of the steady-state lift, drag and moment coefficients from the two methods are found to be in good agreement. Notable, however, are the discrepancies between these results and other recent numerical solutions to the steady-state Navier-Stokes equations. Some unsteady results are also given for the higher Reynolds numbers of 60, 100 and 200. In these cases the flow does not tend to be a steady state but develops a periodic pattern of vortex shedding.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号