首页 | 本学科首页   官方微博 | 高级检索  
     


Maximal heat transfer density: Plates with multiple lengths in forced convection
Authors:T Bello-Ochende  A Bejan  
Affiliation:Department of Mechanical Engineering and Materials Science, Duke University, Box 90300, Durham, NC 27708-0300, USA
Abstract:This paper shows that in a space filled with heat generating parallel plates and laminar forced convection, the heat transfer density can be increased beyond the level known for parallel plates with optimal spacing. The technique consists of inserting in every entrance region new generations of smaller plates, because smaller plates have thin boundary layers that fit in the unused (isothermal) entrance flow. This technique can be repeated several times, and the result is a sequence of multi-scale flow structures that have progressively higher heat transfer densities. The work consists of numerical simulations in a large number of flow configurations, one differing slightly from the next. The complete optimized architecture and performance of structures with one, two and three plate length scales are reported. Diminishing returns are observed as the number of length scales increases. This method can be used to develop multi-scale nonuniform flow structures for heat exchangers and cooled electronic packages.
Keywords:Constructal design  Optimal spacings  Multi-scale structures  Pressure drop number  Optimized complexity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号