首页 | 本学科首页   官方微博 | 高级检索  
     

基于CS的Hopfield神经网络数字识别应用
引用本文:董亚南,高晓智. 基于CS的Hopfield神经网络数字识别应用[J]. 计算机系统应用, 2015, 24(7): 132-136
作者姓名:董亚南  高晓智
作者单位:1. 上海海事大学信息工程学院,上海,201306
2. 上海海事大学信息工程学院,上海 201306; 阿尔托大学自动化与系统技术系,赫尔辛基 FI-00076
摘    要:介绍了布谷鸟搜索(cuckoo search, CS)和Hopfield神经网络的基本原理,研究了基于Hopfield神经网络的数字识别应用。针对Hopfield网络权值在数字识别时易陷入局部最优,提出将CS引入Hopfield神经网络的解决方法。利用CS对复杂、多峰、非线性极不可微函数的全局搜索能力,使Hopfield网络在较高噪信比的情况下仍保持较高的联想成功率,并进行了仿真。仿真结果表明,该方法识别数字的效果更佳。

关 键 词:CS  Hopfield神经网络  数字识别
收稿时间:2014-11-05
修稿时间:2014-12-17

Application of Digit Recognition Based on Hopfield Neural Network with CS
DONG Ya-Nan and GAO Xiao-Zhi. Application of Digit Recognition Based on Hopfield Neural Network with CS[J]. Computer Systems& Applications, 2015, 24(7): 132-136
Authors:DONG Ya-Nan and GAO Xiao-Zhi
Affiliation:Information Engineering Institute, Shanghai Maritime University, Shanghai 201306, China;Information Engineering Institute, Shanghai Maritime University, Shanghai 201306, China;Department of Automation and Systems Technology, Aalto University, Helsinki FI-00076, Finland
Abstract:The basic theories of cuckoo search (CS) and Hopfield Neural Network (HNN) are introduced, and the application of Hopfield Network in the digit recognition is researched. Aiming at the problem that Hopfield Neural Network can easily fall into local minimum, a new method that Hopfield network combines CS is presented. The method uses the global search capability of CS for complex, multimodal, nonlinear and non-differentiable functions to make Hopfield network keep a higher success rate even if noise-to-Signal ratio is high, and a simulation was carried out. Experiment results show that this method has a better performance.
Keywords:CS  Hopfield neural network  digit recognition
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号