Modeling the effect of hygroscopic curtains on relative humidity for spaces air conditioned by DX split air conditioning system |
| |
Authors: | K. Ghali O. KatananiM. Al-Hindi |
| |
Affiliation: | Department of Mechanical Engineering, American University of Beirut, P.O. Box 11-0236, Beirut 1107-2020, Lebanon |
| |
Abstract: | The use of hygroscopic materials for moisture buffering is a passive way to moderate the variation of indoor humidity. Through absorption and desorption, surface materials in the indoor environment, such as curtains, carpets and wall paper, are able to dampen the moisture variations. The moisture buffering capacity of these materials may be used to improve the relative humidity of the indoor environment at reduced energy costs.The objectives of this paper are threefold. The first objective is to derive a theoretical model for the transient moisture transfer between a curtain system and the indoor air for the case where the curtain is placed in front of a wall. The second objective is to conduct experiments inside environmental chambers to validate the theoretical model and to test the ability of curtains to moderate indoor humidity. It is shown that the experimental results for the curtain moisture uptake and the relative humidity inside the chamber compared well with the model simulation results. The third and final objective is to test and evaluate the model under “real environment conditions” for a case study of a hygroscopic cotton curtain, placed in a “typical” office space in the city of Beirut with an area of 25 m2 that uses direct expansion (DX) air conditioning system. It is found that hygroscopic curtains maintain humidity of less than 65% during part load operation compared to the upper limit of 70% relative humidity when no curtain is used. On the other hand, it is found that the energy use, as determined by the daily electrical power consumption of the DX system, is almost the same for the two cases, (with and without a curtain), where approximately 20 kWh of energy input is required 13 kWh of sensible energy and 7 kWh of latent energy. |
| |
Keywords: | Hygroscopic moisture absorption of cloth curtains Indoor relative humidity Modeling and experimentation DX air conditioning system |
本文献已被 ScienceDirect 等数据库收录! |
|