首页 | 本学科首页   官方微博 | 高级检索  
     

基于AR-连续HMM的故障诊断模型及应用
引用本文:柳新民 邱静 刘冠军. 基于AR-连续HMM的故障诊断模型及应用[J]. 机械科学与技术, 2005, 24(3): 350-352,360
作者姓名:柳新民 邱静 刘冠军
作者单位:国防科技大学机电工程与自动化学院 长沙410073(柳新民,邱静),国防科技大学机电工程与自动化学院 长沙410073(刘冠军)
基金项目:国家自然科学基金项目(50375153),“十·五”部委预研基金项目(41319040202)资助
摘    要:在状态监测与故障诊断中,被测设备的状态一般不能直接观察到,要通过测量被测设备的表现来感知,这和隐马尔可夫模型(HMM)在本质是相通的。因此可以利用连续高斯密度混合HMM分析被测设备的振动信号,首先以AR模型系数为特征,研究不同状态数与不同混合高斯数对HMM模型分类的影响,再利用较优的状态数与混合高斯数HMM模型进行状态监测和故障诊断,诊断与对比实验结果表明该方法能利用少量样本进行训练和有效诊断。

关 键 词:滚动轴承  故障诊断  HMM  AR模型
文章编号:1003-8728(2005)03-0350-03

A Diagnosis Model Based on AR-Continuous HMM and Its Application
LIU Xin-min,QIU Jing,LIU Guan-jun. A Diagnosis Model Based on AR-Continuous HMM and Its Application[J]. Mechanical Science and Technology for Aerospace Engineering, 2005, 24(3): 350-352,360
Authors:LIU Xin-min  QIU Jing  LIU Guan-jun
Abstract:In condition monitoring and fault diagnosis, because the state of the unit under test(UUT) cannot be observed directly, it should be judged by its behavior. This is similar to Hidden Markov Model(HMM) in nature, so continuous Gaussian mixture HMM is adopted here to analyze the vibration signals of UUT. First through the features based on the reflection coefficients of AR model extracted from vibration signals, the influence of different number of states and Gauss numbers on HMM are investigated, then the HMM with better number of state and Gauss number is used to monitor and diagnose the rolling-bearing′s conditions. The result shows that the proposed method is effective for diagnosis problem with small training samples.
Keywords:Rolling-bearing  Fault diagnosis  HMM  AR model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号