首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental Comparison of the Effects of Nanometric and Micrometric Particulates on the Tensile Properties and Fracture Behavior of Al Composites at Room and Elevated Temperatures
Authors:Adnan Ahmed   Andrew J. Neely  Krishna Shankar
Affiliation:(1) School of Engineering and Information Technology, University of New South Wales at the Australian Defence Force Academy, Canberra, 2600, Australia
Abstract:This article studies the influence of nanometric (n-SiCp) and micrometric-scale SiC particulates (μ-SiCp) on the tensile properties of the Al 7075 alloy. The unreinforced Al and its composites were synthesized using the powder metallurgy (P/M) route and were tested uniaxially in tension at both room and elevated temperatures. Aging behavior was studied to observe any effect of the reinforcement on the aging kinetics and hardness of the composites. X-ray diffraction was performed to determine the crystal structures of the raw materials and any reaction phase formed in the composites. The n-SiCp were not dispersed uniformly in the Al matrix and clustered mainly at the grain boundaries. The stiffness of the composites increased and the ductility decreased with an increase in the volume fraction of the n-SiCp. The n-SiCp proved to be a better reinforcement than the traditional μ-SiCp in terms of imparting higher ductility to the composite. Fractography and microscopy using optical, scanning electron, and transmission electron microscopes were performed for failure and microstructural analysis of all the materials. At room temperature, the fracture altered from ductile in the unreinforced Al to brittle in the composites. At an elevated temperature, the fracture mechanism transformed from brittle to ductile rupture in the composites.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号