首页 | 本学科首页   官方微博 | 高级检索  
     

基于视觉显著性的零件缺陷检测
引用本文:管声启,李振浩,常江. 基于视觉显著性的零件缺陷检测[J]. 软件, 2020, 0(2): 49-51
作者姓名:管声启  李振浩  常江
作者单位:;1.西安工程大学机电工程学院
基金项目:陕西省重点研发计划项目(项目编号:2018GY-020)
摘    要:为了提高零件缺陷检测的准确率,提出了一种基于视觉显著性算法的零件缺陷检测方法。首先将采集零件缺陷图像进行高斯差分滤波,以最大程度消除背景信息的干扰。然后对高斯差分滤波后的零件缺陷图像进行超像素分割,并利用全局图像对比方法构建超像素图像显著图,从而有效的提高缺陷的显著性。最后,采用最大类间方差法分割缺陷。试验表明该方法能提高零件缺陷的检测准确率。

关 键 词:零件缺陷  视觉显著性  超像素分割  显著图构建

Defect Detection of Mechanical Parts Based on Visual Saliency
GUAN Sheng-qi,LI Zhen-hao,CHANG Jiang. Defect Detection of Mechanical Parts Based on Visual Saliency[J]. Software, 2020, 0(2): 49-51
Authors:GUAN Sheng-qi  LI Zhen-hao  CHANG Jiang
Affiliation:(College of Mechanical and Electronic Engineering,Xi’an Polytechnic University,710048,China)
Abstract:In order to improve the accuracy of part defect detection,a novel method of part defect detection based on visual saliency algorithm is presented.Firstly,the defect image was filtered by Gauss difference to eliminate the interference of background information.Then,the part defect image after Gauss difference filtering was segmented by super-pixel,and the super-pixel saliency image was constructed by using the global image contrast method,which effectively improves the defect saliency.Finally,the method of maximum inter class variance was used to detect defection.The experiment results show that the method can improve the detection accuracy of part defects.
Keywords:Part defect  Visual saliency  Super-pixel segmentation  Saliency map construction
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号