首页 | 本学科首页   官方微博 | 高级检索  
     


Transformations and plant uptake of urine N and S in long and short-term pastures
Authors:PH Williams  RJ Haynes
Affiliation:(1) Canterbury Agriculture and Science Centre, New Zealand Institute for Crop & Food Research Ltd, Private Bag 4704, Christchurch, New Zealand;(2) Canterbury Agriculture and Science Centre, New Zealand Institute for Crop & Food Research Ltd, Private Bag 4704, Christchurch, New Zealand
Abstract:A field trial was carried out to compare the transformations and plant uptake of urine N and S in a short-term pasture from within an arable/pasture ley rotation and a long-term pasture. Animal urine labelled with 15N and 35S was applied to microplots at both sites. These microplots were destructively sampled at various time intervals over 12 months and analysed for 15N and 35S. It is known that soil organic matter accumulates under short-term pastures compared with a long-term pasture in which accumulation and degradation are in balance. Consequently, it was hypothesised that immobilization of urine N and S is more intense in the short-term. However, in this study there was considerably less immobilization of 15N and 35S into soil organic forms under short-term pasture than long-term pasture. This was attributable to a greater pasture dry matter response to urine application under the short-term pasture (due to its inherently low N fertility) resulting in a greater plant uptake of 15N and 35S with less 15N and 35S consequently being available for immobilization. At both sites, all of the applied 35S was accounted for through plant uptake and recovery in the soil, but 21–48% of the 15N was unaccounted for and presumed to have been lost through gaseous emissions. It was concluded that accumulation of soil organic N and S under short-term pastures is likely to be attributable to turnover of plant residues (particularly root material) and does not appear to be related to immobilization in urine patches.
Keywords:labelled nitrogen  Lolium perenne  nitrogen cycling  root biomass  straw  Triticum aestivum
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号