首页 | 本学科首页   官方微博 | 高级检索  
     


Electron-hole transport in (La0.9Sr0.1)0.98Ga0.8Mg0.2O3−δ electrolyte: effects of ceramic microstructure
Authors:VV Kharton  AL Shaula  FMB Marques
Affiliation:a Department of Ceramics and Glass Engineering, UIMC, University of Aveiro, 3810-193 Aveiro, Portugal
b Institute of Physicochemical Problems, Belarus State University, 14 Leningradskaya Str., 220080 Minsk, Belarus
Abstract:The oxygen ion transference numbers of a series of (La0.9Sr0.1)0.98Ga0.8Mg0.2O3−δ (LSGM) ceramics with different microstructures, prepared by sintering at 1673 K for 0.5-120 h, were determined at 973-1223 K by a modified Faradaic efficiency technique, taking electrode polarization into account. In air, the transference numbers vary in the range 0.984-0.998, decreasing when temperature or oxygen partial pressure increases. Longer sintering times lead to grain growth and to the dissolution of Sr-rich secondary phases and magnesium oxide, present in trace amounts at the grain boundaries, into the major perovskite phase. This is accompanied with a slight decrease of the total grain-interior resistivity and thermal expansion, while the boundary resistance evaluated from impedance spectroscopy data decreases 3-7 times. The electron-hole transport in LSGM ceramics was found to decrease when the sintering time increases from 0.5 to 40 h, probably indicating a considerable contribution of acceptor-enriched boundaries in the hole conduction. Due to reducing boundary area in single-phase materials, further sintering leads to higher p-type conductivity. The results show that, as for ionic conductivity, electronic transport in solid electrolytes significantly depends on ceramic microstructure.
Keywords:Lanthanum gallate  Solid electrolyte  Transference number  Ceramic microstructure  Electron-hole conductivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号