首页 | 本学科首页   官方微博 | 高级检索  
     


Feasibility study of a flexible grinding method for precision machining of the TiAl-based alloy
Authors:Lai Zou  Yun Huang  Guojun Zhang  Xiping Cui
Affiliation:1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, P.R. of Chinazoulai@cqu.edu.cn zoulai613@sina.com;2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, P.R. of China;3. School of Material Science and Engineering, Harbin Institute of Technology, Harbin, P.R. of China
Abstract:This study presents detailed experimental investigations on precision machining of the TiAl-based alloy with an abrasive belt flexible grinding method. Subsequently, the feasibility of this precision machining method is evaluated with respect to the material removal rate, abrasive wear, machined surface roughness, and residual stress. The material removal rate and surface roughness were determined as experimental indicators and were measured via a three-coordinate measuring instrument and surface profiler, respectively. Micro-morphologies of the machined surface and worn abrasive belt were investigated via a scanning electron microscope. The residual stress distributions in the machined surface layer were detected by using an X-ray diffractometer. The experimental results revealed that the aforementioned evaluation indicators satisfied the desired requirements, thereby indicating that the abrasive belt flexible grinding technique was suitable for precision machining of the TiAl-based alloy. Additionally, the optimal combinations of grinding parameters were determined to obtain desirable material removal rate and machined surface roughness. The basic wear processes and characteristics of the abrasive belt were thoroughly examined. The formation of desirable residual compressive stresses in the machined surface layer was mainly attributed to low frequency and small amplitude vibration knocking at the grinding interface.
Keywords:Alloy  grinding  feasibility  flexible  precision  abrasive  wear  surface  roughness  morphology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号