Characterizing forest ecological structure using pulse types and heights of airborne laser scanning |
| |
Authors: | Naoko Miura Simon D. Jones |
| |
Affiliation: | School of Mathematical and Geospatial Sciences, RMIT University, GPO Box 2476V, Melbourne VIC 3001, Australia |
| |
Abstract: | Characterizing forest structure is an important part of any comprehensive biodiversity assessment. However, current methods for measuring structural complexity require a laborious process that involves many logistically expensive point based measurements. An automated or semi-automated method would be ideal. In this study, the utility of airborne laser scanning (LiDAR; Light Detection and Ranging) for characterizing the ecological structure of a forest landscape is examined. The innovation of this paper is to use different laser pulse return properties from a full waveform LiDAR to characterize forest ecological structure. First the LiDAR dataset is stratified into four vertical layers: ground, low vegetation (0-1 m from the ground), medium vegetation (1-5 m from the ground) and high vegetation (> 5 m). Subsequently the “Type” of LiDAR return is analysed: Type 1 (singular returns); Type 2 (first of many returns); Type 3 (intermediate returns); and Type 4 (last of many returns). A forest characterization scheme derived from LiDAR point clouds is proposed. A validation of the scheme is then presented using a network of field sites that recorded commonly used metrics of biodiversity. The proposed forest characterization categories allow for quantification of gaps (above bare ground, low vegetation and medium vegetation), canopy cover and its vertical density as well as the presence of various canopy strata (low, medium and high). Regression analysis showed that LiDAR derived variables were good predictors of field recorded variables (R2 = 0.82, P < 0.05 between LiDAR derived presence of low vegetation and field derived LAI for low vegetation). The proposed scheme clearly shows the potential of full waveform LiDAR to provide information on the complexity of habitat structure. |
| |
Keywords: | Remote sensing LiDAR Vertical structure Canopy cover Biodiversity Natural resource management |
本文献已被 ScienceDirect 等数据库收录! |
|