首页 | 本学科首页   官方微博 | 高级检索  
     


β-Si3N4Whiskers Embedded in Oxynitride Glasses: Interfacial Microstructure
Authors:Ellen Y. Sun,Kathleen B. Alexander,Paul F. Becher&#  ,Shyh-Lung Hwang
Affiliation:Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6068
Abstract:Interfacial microstructures in βP-Si3N4( w )-Si-Al-Y-O-N-glass systems were investigated by systematically varying the nitrogen content and the Al:Y ratio of the glass matrix. High-resolution and analytical transmission electron microscopy (HREM and AEM) studies revealed that the interfacial microstructure is a function of the glass composition. No interfacial phases were formed in glasses with low Al:Y ratios and in glasses with high Al:Y ratios and low nitrogen content, whereas epitaxial growth of an interfacial layer (100–200 μm thick) on the βP-Si3N4( w ) occurred in a glass matrix with high Al:Y ratio and high nitrogen content. The interfacial layer was identified to be a β'-SiAION phase. Interfaces containing the SiAION layer exhibited high debonding energy compared to Si3N4( w )–glass interfaces. HREM studies indicated that the lattice-mismatch strain in the SiAION layer was relieved by dislocation formation at the SiAION–Si3N4( w ) interface. The difference in interfacial debonding energy was, hence, attributed to the local atomic structure and bonding between the glass-β-Si3N4 and the glass–β'-SiAION phases. This observation was clear evidence of the strong influence of glass chemistry on the interfacial debonding behavior by altering the interfacial microstructure.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号