首页 | 本学科首页   官方微博 | 高级检索  
     

核聚类快速后向传播算法
引用本文:孙全玲,王立新. 核聚类快速后向传播算法[J]. 计算机工程与应用, 2013, 49(10): 118-120
作者姓名:孙全玲  王立新
作者单位:安徽建筑工业学院 电子与信息工程学院计算机工程系,合肥 230601
摘    要:后向传播神经网络算法是一种经典的分类算法,但是通常该算法训练时间较长。针对这种不足,提出了一种基于核聚类的快速后向传播算法。利用核聚类将原始样本划分为多个簇,对每一个簇计算簇中心样本,利用所有的簇中心样本作为新训练集进行神经网络学习。在UCI标准数据集和说话人识别数据集上的仿真实验,充分说明了算法较传统后向传播算法具有明显的速度优势。

关 键 词:后向传播  神经网络  核聚类  说话人识别  

Fast kernel clustering back propagation algorithm
SUN Quanling,WANG Lixin. Fast kernel clustering back propagation algorithm[J]. Computer Engineering and Applications, 2013, 49(10): 118-120
Authors:SUN Quanling  WANG Lixin
Affiliation:Department of Computer, Electronic and Information Engineering, Anhui University of Architecture, Hefei 230601, China
Abstract:The back propagation algorithm is a classic classification algorithm, but it is usually with a long training time. For this deficiency, this paper presents a fast back propagation algorithm based on kernel clustering. The algorithm uses kernel clustering to divide the original samples into multiple clusters, then computes the sample’s center of each cluster, and uses all the center samples as the new training set and trains a neural network classifier. Simulation experiments on UCI standard data set and speaker recognition data set show that the proposed algorithm has obvious advantages compared with the traditional back propagation algorithm.
Keywords:back propagation  neural network  kernel clustering  speaker recognition
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号