首页 | 本学科首页   官方微博 | 高级检索  
     

信息熵方法及在中文问题分类中的应用
引用本文:张巍,陈俊杰. 信息熵方法及在中文问题分类中的应用[J]. 计算机工程与应用, 2013, 49(10): 129-131
作者姓名:张巍  陈俊杰
作者单位:1.山西职工医学院 信息中心,太原 0300122.太原理工大学 计算机科学与技术学院,太原 030024
摘    要:针对中文问题分类方法中布尔模型提取特征信息损失较大的问题,提出了一种新的特征权重计算方法。在提取问题特征时,通过把信息熵算法和医院本体概念模型结合在一起,进行问题的特征模型计算,在此基础上使用支持向量机方法进行中文问题分类。在城域医院问答系统的中文问题集上进行实验,证明了该方法的有效性,大类准确率及小类准确率分别达到89.0%和87.1%,取得了较好的效果。

关 键 词:信息熵  本体  问题分类  支持向量机  

Method of information entropy and its application in Chinese question classification
ZHANG Wei,CHEN Junjie. Method of information entropy and its application in Chinese question classification[J]. Computer Engineering and Applications, 2013, 49(10): 129-131
Authors:ZHANG Wei  CHEN Junjie
Affiliation:1.Information Center, Shanxi Medical College for Continuing Education, Taiyuan 030012, China2.College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
Abstract:Aimed at the problem of greater information loss to use Boolean model to extract the feature during Chinese question classification, a new method which calculated feature weight is proposed. When the question feature is extracted, the model of question feature weight is calculated by a combination of information entropy algorithm and hospital ontology concept model. On that basis, the method of Support Vector Machine is used to classify Chinese questions. The classification method is tested on Chinese question set of the city-domain hospital question answering system. This method is proved to be effective and a better result is achieved. Results show that the accuracy of coarse class and fine class achieves 89.0% and 87.1%.
Keywords:information entropy  ontology  question classification  support vector machine
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号