首页 | 本学科首页   官方微博 | 高级检索  
     


De Novo Analysis of the Transcriptome of Meloidogyne enterolobii to Uncover Potential Target Genes for Biological Control
Authors:Xiangyang Li  Dan Yang  Junhai Niu  Jianlong Zhao  Heng Jian
Affiliation:1Department of Plant Pathology, China Agricultural University, Beijing 100193, China; (X.L.); (D.Y.); (J.Z.);2Beijing University of Agriculture, Beijing 102206, China;3Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China; ;4Hainan Engineering Technology Research Center for Tropical Ornamental Plant Germplasm Innovation and Utilization, Danzhou 571737, China
Abstract:Meloidogyne enterolobii is one of the obligate biotrophic root-knot nematodes that has the ability to reproduce on many economically-important crops. We carried out de novo sequencing of the transcriptome of M. enterolobii using Roche GS FLX and obtained 408,663 good quality reads that were assembled into 8193 contigs and 31,860 singletons. We compared the transcripts in different nematodes that were potential targets for biological control. These included the transcripts that putatively coded for CAZymes, kinases, neuropeptide genes and secretory proteins and those that were involved in the RNAi pathway and immune signaling. Typically, 75 non-membrane secretory proteins with signal peptides secreted from esophageal gland cells were identified as putative effectors, three of which were preliminarily examined using a PVX (pGR107)-based high-throughput transient plant expression system in Nicotiana benthamiana (N. benthamiana). Results showed that these candidate proteins suppressed the programmed cell death (PCD) triggered by the pro-apoptosis protein BAX, and one protein also caused necrosis, suggesting that they might suppress plant immune responses to promote pathogenicity. In conclusion, the current study provides comprehensive insight into the transcriptome of M. enterolobii for the first time and lays a foundation for further investigation and biological control strategies.
Keywords:Meloidogyne enterolobii   nematode   transcriptome   effector   pathogenicity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号