首页 | 本学科首页   官方微博 | 高级检索  
     

基于时空曲线演化的多视频运动对象分割算法
引用本文:包红强,张兆扬,陈右铭. 基于时空曲线演化的多视频运动对象分割算法[J]. 电子学报, 2005, 33(1): 181-185
作者姓名:包红强  张兆扬  陈右铭
作者单位:上海大学;上海大学
摘    要:多视频对象由于其运动的复杂性,在分割提取过程中有较大的难度.本文提出了一种基于时空曲线演化的多视频对象自动分割方法,首先根据视频序列帧间(时间域)和帧内(空间域)信息的不同特点,建立基于全局和局部特征的能量模型,并由此导出基于level sets方法的曲线演化方程;然后用视频序列的连继两帧帧差得到初始的视频对象,分别进行时间和空间曲线演化跟踪,提取多个视频对象;当对象因运动而发生相互遮挡现象时,利用基于Bayes最小错误概率决策法则的判断方法,分割遮挡对象和显露对象.实验结果表明,本文提出算法的分割效果在空间准确度上比COST211算法提高30-50%,比最佳的帧差分割算法提高5-10%.

关 键 词:多视频对象分割  时空曲线  遮挡处理
文章编号:0372-2112(2005)01-0181-05
收稿时间:2004-01-12

Multiple Video Object Segmentation Based on Spatio-Temporal Curve Evolution
BAO Hong-qiang,ZHANG Zhao-yang,CHEN You-ming. Multiple Video Object Segmentation Based on Spatio-Temporal Curve Evolution[J]. Acta Electronica Sinica, 2005, 33(1): 181-185
Authors:BAO Hong-qiang  ZHANG Zhao-yang  CHEN You-ming
Affiliation:1. School of Communication and Information Engineering,Shanghai University,Shanghai 200072,China;2. Key Laboratory of Advanced Displays and System Application,Ministry of Education,Shanghai 200072,China
Abstract:Segmentation of multiple moving object in an image sequence is one of the most challenging problems in image processing due to the complexity of its motion.This paper presents a novel multiple object segmentation algorithm based on spatial-temporal curve evolution.First,According to the dissimilar characteristic of the intra-frame and inter-frame (Spatial and Temporal) information,a joint energy model is proposed with global and local features,thus,a curve evolution equation could be achieved based on the method of level sets.Then,an initial object model is achieved with the difference between two successive frames,multiple objects are tracked and extracted with spatio-temporal curve evolution.Finally,while the occlusion is emerged due to multiple object overlapping motion,the objects could be segmented using Bayes classification for minimum error.The experiment results show that the algorithm is effective.
Keywords:multiple video object segmentation  spatio-temporal curve evolution  occlusion processing.
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号