首页 | 本学科首页   官方微博 | 高级检索  
     

自适应H-minima的改进分水岭堆叠细胞分割方法
引用本文:方红萍,方康玲,刘新海. 自适应H-minima的改进分水岭堆叠细胞分割方法[J]. 计算机应用研究, 2016, 33(5)
作者姓名:方红萍  方康玲  刘新海
作者单位:武汉科技大学,武汉科技大学,武汉科技大学
基金项目:国家自然科学基金青年基金资助项目
摘    要:针对传统分水岭方法初始分割结果存在过分割问题,本文提出自适应 的改进堆叠细胞分割方法。该方法利用不同 值 变换抑制种子噪声;并以对应候选种子为中心,分别采用改进K-均值算法合并初始分割区域,产生候选分割结果; 然后,基于形状先验定义圆度指标FuzzyR,并将堆叠细胞平均圆度作为评价函数,自适应提取各堆叠区域最优 值,实现正确分割。实验结果证明,针对于人工合成和真实堆叠细胞图像,本算法均能有效抑制过分割、减少欠分割,分割性能显著提高。

关 键 词:分水岭分割;自适应H-minima变换;堆叠细胞分割; K-均值聚类; 区域邻接图;类别数目优化
收稿时间:2015-01-31
修稿时间:2015-03-20

Clustered cells segmentation using modified watershed method based adaptive H-minima
Affiliation:Wuhan University of Science and Technology,Wuhan University of Science and Technology,Wuhan University of Science and Technology
Abstract:For addressing the issue of over-segmentation in the watershed initial segmentation, this paper proposed a clustered cells segmentation method based on adaptive H-minima transform in watershed framework. Using corresponding candidate seeds as clustering initial centers , which were reserved seeds after noise seeds suppression with different h value H-minima transform , this method firstly produced some candidate segmentation results through modified K-means region merging algorithms; Then, it adaptively chose the optimal h value and produced the optional segmentation result for each clustered cells region using maximal average roundness of candidate segmentation results as optimization objective. Experiments on a variety of synthetic and real microscopic cell images shown that the proposed method can efficiently restrain over-segmentation and decrease under-segmentation. This method yielded more accurate segmentation rate than the state-of-the-art watershed-based segmentation methods
Keywords:
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号