首页 | 本学科首页   官方微博 | 高级检索  
     

基于近端梯度的快速字典学习方法的研究
引用本文:林家印,战荫伟. 基于近端梯度的快速字典学习方法的研究[J]. 计算机应用研究, 2016, 33(5)
作者姓名:林家印  战荫伟
作者单位:广东工业大学,广东工业大学
基金项目:广东省教育厅高等院校学科建设专项资金
摘    要:基于稀疏表示的图像处理技术近年来成为研究热点,多种字典学习算法如K-SVD,OLM(Online dictionary learning Method)等予以提出;这类算法使用重叠的图像块来构建字典进行稀疏表示,产生了大量稀疏系数,致使计算过缓,且不能确保收敛。针对此问题开展研究,提出了基于近端梯度的快速字典学习算法;该算法结合了多凸优化求解,采用近端梯度算法求解字典学习过程中涉及的优化问题,有效地降低了每次迭代的复杂度,减少了迭代开销,同时能够确保收敛。合成数据上的实验表明,相较于其它经典算法,该算法进行字典学习速度更快,所耗时间较短,获得的字典更好;且在图像稀疏去噪的应用中,该算法的去噪效果表现优异。

关 键 词:字典学习 稀疏表示 图像去噪 近端梯度 全局收敛
收稿时间:2015-03-13
修稿时间:2015-05-12

Fast dictionary learning method research based on proximal gradient
Affiliation:Guangdong University of Technology,Guangdong University of Technology
Abstract:In recent years, image processing technology based on sparse representation has become a hot research; a variety of algorithms for dictionary learning such as K-SVD, OLM (Online dictionary learning), etc. have been proposed and have made a huge progress; these algorithms use over-lapping image blocks to build dictionary, and sparse representation, this process produces a plethora of sparse coefficients, leading to calculate slowly. Conducting research to address the problem, and proposing the fast dictionary learning method based on proximal gradient, this method combine the multi-convex optimization, using the proximal gradient algorithm to solve the optimization problem involved in dictionary learning process, which reduces the complexity of each iteration effectively, and cut down the iterations overhead , while ensuring global convergence. In numerical experiments on synthetic data show that, compared to other algorithms, the algorithm can get a better dictionary, which is more competitive in terms of speed and quality. However, in the application of image sparse de-noising, the effect of our method is excellent.
Keywords:dictionary learning   sparse representation   image de-noising   proximal gradient   global convergence
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号