首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的基于RFID的室内移动机器人自定位方法研究
引用本文:董永峰,王安娜,周艳聪,顾军华. 一种新的基于RFID的室内移动机器人自定位方法研究[J]. 计算机应用研究, 2016, 33(3)
作者姓名:董永峰  王安娜  周艳聪  顾军华
作者单位:河北工业大学,河北工业大学,天津商业大学,河北工业大学
基金项目:国家自然科学基金资助项目( 91024002) ;天津市应用基础与前沿技术研究计划重点项目(14JCYBJC15900)
摘    要:针对室内移动机器人自定位算法定位精度不高、定位误差存在波动的问题,提出了一种RTFL(RFID tag floor based localization)定位算法与RSSI定位算法相结合的室内移动机器人自定位方法。由RTFL定位算法给定机器人位置估算初值和机器人所在的范围,然后通过基于RSSI的机器人自定位系统进行机器人位置的进一步精确定位。求解过程中,通过遗传算法求解极大似然方程组,并且提出了染色体的筛选和剔除策略。仿真实验结果表明:该方法在有效的时间内完成定位,平均定位误差为0.1572m,与传统的改进方法0.33214m的定位误差相比,降低了近一倍。并且新方法受环境影响较小,鲁棒性较好,能够很好的满足室内移动机器人的定位要求。

关 键 词:移动机器人;射频识别;自定位;极大似然定位算法;遗传算法
收稿时间:2014-11-16
修稿时间:2016-01-28

Research on A Novel Self-Localization Method for Indoor Robot Based on RFID
Dong Yong Feng,WANG An-n,ZHOU Yan-cong and GU Jun-hua. Research on A Novel Self-Localization Method for Indoor Robot Based on RFID[J]. Application Research of Computers, 2016, 33(3)
Authors:Dong Yong Feng  WANG An-n  ZHOU Yan-cong  GU Jun-hua
Affiliation:Hebei University of Technology,Hebei University of Technology,,Tianjin University of Commerce,Hebei University of Technology
Abstract:Aiming at the fact that the low positioning accuracy and the large fluctuation of the current self-Localization algorithm for indoor mobile robot. An algorithm using RTFL (RFID tag floor based localization) and RSSI positioning method was proposed. The new method was less affected by the environment and had higher localization accuracy. The initial estimation position of the robot and the boundary of the robot may exist were given by RTFL algorithm, which could shorten the search range and reduce the computational time of genetic algorithm effectively. A method that solves the maximum likelihood equations by the genetic algorithm was also proposed, in which strategy of chromosomes selecting and deleting was adopted. The results of experiments show that the new system is less affected by environment, has a good robustness and can accomplish positioning effectively. Positioning accuracy of the new system can reach 0.1572m, increasing by one time than traditional error 0.33214m, and it can well meet the requirement of indoor mobile robot localization.
Keywords:
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号