首页 | 本学科首页   官方微博 | 高级检索  
     


Analytical Modeling of Strain Rate Distribution During Friction Stir Processing
Authors:BM Darras  MK Khraisheh
Affiliation:(1) Center for Manufacturing and Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA
Abstract:Friction Stir Processing (FSP) is becoming an acceptable technique for modifying the grain structure of sheet metals. One of the most important issues that hinder the widespread use of FSP is the lack of accurate models that can predict the resulting microstructure in terms of process parameters. Most of the work that has been done in the FSP field is experimental, and limited modeling activities have been conducted. In this work, an analytical model is presented that can predict the strain rate distribution and the deformation zone in the friction stir processed zone as a function of process parameters. In the model, the velocity fields within the processed zone are determined by incorporating the effects of both the shoulder and the pin of the tool on the material flow. This is achieved by introducing state variables and weight functions. The model also accounts for different interfacial conditions between the tool and the material. The effects of different process parameters and conditions on the velocity fields and strain rate distributions are discussed. The results clearly show that the model can successfully predict the shape of the deformation zone and that the predicted strain rate values are in good agreement with results reported in the literature. This article was presented at the AeroMat Conference, International Symposium on Superplasticity and Superplastic Forming (SPF) held in Baltimore, MD, June 25-28, 2007.
Keywords:friction stir processing  interfacial contact conditions  microstructure modification  severe plastic deformation  strain rate distribution
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号