首页 | 本学科首页   官方微博 | 高级检索  
     

改进EEMD算法在高压并联电抗器声信号去噪中的应用
引用本文:王 果,雷 武,闵永智,万保权,李宝鹏,王毅斌. 改进EEMD算法在高压并联电抗器声信号去噪中的应用[J]. 电力系统保护与控制, 2023, 51(24): 164-174
作者姓名:王 果  雷 武  闵永智  万保权  李宝鹏  王毅斌
作者单位:1.中国电力科学研究院有限公司电网环境保护国家重点实验室,湖北武汉430074;2.兰州交通大学自动化与电气工程学院,甘肃兰州730070
基金项目:2022年度电网环境保护国家重点实验室开放基金项目资助(GYW51202201459)
摘    要:高压并联电抗器运行过程中产生的声信号是准确判定电抗器运行状态的重要依据,在对电抗器声信号现场采集时易受到多种外界噪声的干扰,测量仪器无法有效进行预处理,导致对电抗器运行状态的评估发生误判。提出了一种基于多传感器融合及最小下限频率截止的改进集合经验模态分解(ensembleempiricalmodedecomposition,EEMD)高压并联电抗器声信号去噪方法。首先,利用一致性数据融合算法对各声纹传感器进行关联和甄别,剔除失效传感器,确定有效传感器组。其次,选取有效传感器组中的最小下限频率作为固有模态函数(intrinsicmodefunction,IMF)的筛选截止条件并进行集合经验模态分解。然后利用相关系数法提取有效的IMF分量。最后对有效IMF分量叠加重构,得到去噪声信号。模拟实验和实测结果表明,该方法具有较好的去噪效果。通过与传统经验模态分解法(empiricalmodedecomposition,EMD)、标准EEMD去噪技术的比较,验证了该方法在实际应用过程中的有效性和实用性。

关 键 词:高压并联电抗器;声信号去噪;集合经验模态分解;频率截止;多传感器融合
收稿时间:2023-04-09
修稿时间:2023-05-15

Application of an improved EEMD algorithm in high voltage shunt reactor sound signal denoising
WANG Guo,LEI Wu,MIN Yongzhi,WAN Baoquan,LI Baopeng,WANG Yibin. Application of an improved EEMD algorithm in high voltage shunt reactor sound signal denoising[J]. Power System Protection and Control, 2023, 51(24): 164-174
Authors:WANG Guo  LEI Wu  MIN Yongzhi  WAN Baoquan  LI Baopeng  WANG Yibin
Affiliation:1.StateKeyLaboratoryofPowerGridEnvironmentalProtection,ChinaElectricPowerResearchInstitute,Wuhan430074,China;2.SchoolofAutomationandElectricalEngineering,LanzhouJiaotongUniversity,Lanzhou730070,China
Abstract:Theacousticsignalsgeneratedduringtheoperationofhigh-voltageshuntreactorsareacriticalbasisforaccuratelydeterminingthereactor''soperationalstatus.However,collectingtheseacousticsignalson-sitecanbesubjecttointerferencefromvariousexternalnoises.Themeasuringinstrumentsoftenfailtoeffectivelypre-processthesesignals,resultinginaninaccurateassessmentofthereactor''soperatingcondition.Thispaperpresentsanenhancedensembleempiricalmodedecomposition(EEMD)acousticsignaldenoisingapproachforhigh-voltageshuntreactors,onewhichreliesonmulti-sensordatafusionandtheselectionofaminimumlowerfrequencylimitfortermination.Initially,aconsistentdatafusionalgorithmisusedtocorrelateandfilterthefaultsensors,discardinganyinvalidsensorsanddeterminingtheactivesensorgroup.Subsequently,theminimumlowerlimitfrequencyforeachsensorsignalischosenasthescreeningterminationcriterionfortheintrinsicmodefunction(IMF)throughspectralanalysis,andtheEEMDdecompositionisconducted.ThecorrelationcoefficientmethodisthenemployedtoextracttheeffectiveIMFcomponents.Finally,theextractedIMFcomponentsaresuperimposedandreconstructedtoobtainthedenoisedsignal.Experimentalandmeasuredsignalsdemonstratethatthemethodcanachievesignaldenoisingaccurately.Acomparisonwiththetraditionalempiricalmodedecomposition(EMD)methodandthestandardEEMDdenoisingtechniqueverifiesthepracticalapplicationeffectivenessandpracticabilityoftheproposedalgorithm.
Keywords:high-voltageshuntreactor  acousticsignaldenoising  EEMD  frequencycutoff  multi-sensorfusion
点击此处可从《电力系统保护与控制》浏览原始摘要信息
点击此处可从《电力系统保护与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号