首页 | 本学科首页   官方微博 | 高级检索  
     

CMAC神经网络结构参数及其结构优化的研究
引用本文:于薇薇,闫杰,C.Sabourin,K.Madani. CMAC神经网络结构参数及其结构优化的研究[J]. 西北工业大学学报, 2008, 26(6)
作者姓名:于薇薇  闫杰  C.Sabourin  K.Madani
作者单位:1. 西北工业大学航天学院飞行控制与仿真研究所,陕西,西安,710072
2. 巴黎十二大学 LISSI 实验室
摘    要:CMAC神经网络具有学习算法简单、收敛速度快、局域泛化等优点,被广泛应用于机器人控制、信号处理、模式识别以及自适用控制等领域。但是网络的训练过程需要大量的存储单元,最优结构参数的选取是CMAC网络设计中一个重要问题。文中通过对函数逼近问题的研究,说明了量化精度和泛化参数如何影响网络对函数的逼近质量。仿真结果表明,通过对结构参数的调整,可以达到最小的逼近误差。而通过对网络结构的优化不但可以节约网络的训练时间而且可以大幅度减少存储单元的数量。

关 键 词:CMAC神经网络  泛化参数  结构优化  函数逼近

Optimizing Structural Parameters for CMAC(Cerebellar Model Articulation Controller)Neural Network
Yu Weiwei,Yan Jie,C.Sabourin,K.Madani. Optimizing Structural Parameters for CMAC(Cerebellar Model Articulation Controller)Neural Network[J]. Journal of Northwestern Polytechnical University, 2008, 26(6)
Authors:Yu Weiwei  Yan Jie  C.Sabourin  K.Madani
Abstract:Aim.To our knowledge,there do not exist any papers in the open literature on optimizing structural parameters in order to reduce memory size and save training time.We now present our results on such an optimization study.In the full paper,we explain in some detail our research results;in this abstract,we just add some pertinent remarks to naming the first two sections of the full paper.Section 1 is:CMAC neural network structure.Section 2 is:CMAC neural network structural parameters and some function approximation problems.In subsection 2.1,we study the two structural parameters:step-length quantization and generalization.Then we discuss how the two parameters influence the approximation quality of the CMAC neural network.In subsection 2.2 we study some function approximation problems and error measurements.In sub-subsection 2.2.1 we give two function approximation examples.In sub-subsection 2.2.2,we calculate the function approximation errors of measurements.Finally we perform computer simulations,whose results are given in Tables 1 through 3 and Figs.6 and 7.These results show preliminarily that our optimization method can not only much decrease memory size but also save training time.
Keywords:neural networks  computer simulation  CMAC(Cerebellar Model Articulation Controller)  structure optimization  generalization parameter  function approximation
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号