首页 | 本学科首页   官方微博 | 高级检索  
     


High-Performance Metal/High-$k$ n- and p-MOSFETs With Top-Cut Dual Stress Liners Using Gate-Last Damascene Process on (100) Substrates
Abstract: Newly proposed mobility-booster technologies are demonstrated for metal/high- $k$ gate-stack n- and pMOSFETs. The process combination of top-cut SiN dual stress liners and damascene gates remarkably enhances local channel stress particularly for shorter gate lengths in comparison with a conventional gate-first process. Dummy gate removal in the damascene gate process induces high channel stress, because of the elimination of reaction force from the dummy gate. PFETs with top-cut compressive stress liners and embedded SiGe source/drains are performed by using atomic layer deposition TiN/$ hbox{HfO}_{2}$ gate stacks with $T_{rm inv} = hbox{1.4} hbox{nm}$ on (100) substrates. On the other hand, nFETs with top-cut tensile stress liners are obtained by using $hbox{HfSi}_{x}/hbox{HfO}_{2}$ gate stacks with $T_{rm inv} = hbox{1.4} hbox{nm}$. High-performance n- and pFETs are achieved with $I_{rm on} = hbox{1300}$ and 1000 $muhbox{A}/muhbox{m} hbox{at} I_{rm off} = hbox{100} hbox{nA}/mu hbox{m}$, $V_{rm dd} = hbox{1.0} hbox{V}$, and a gate length of 40 nm, respectively.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号