首页 | 本学科首页   官方微博 | 高级检索  
     

基于小世界模型的流形学习算法
作者姓名:石陆魁  杨庆新
作者单位:1. 河北工业大学2. 天津工业大学
基金项目:天津市应用基础及前沿技术研究计划项目
摘    要:等距特征映射(ISOMAP)不仅计算复杂度很高,而且缺乏对新样本的学习能力。基于标志点的ISOMAP(L-ISOMAP)通过只保持一些标志点之间的测地线距离有效地降低了复杂度,然而标志点集的随机选择常常会导致较差的嵌入结果。为此,提出了一种基于小世界模型的流形学习算法。根据小世界模型的原理,该算法仅仅保持每个样本点与其k个最近邻和一些随机选择的远点之间的测地线距离,采用最速梯度下降法优化来得到数据的低维表示。理论分析表明,该算法的计算复杂度远远低于ISOMAP的复杂度。利用应力函数和剩余方差对3个算法进行了比较。实验结果表明,从该算法得到的结果与从ISOMAP得到的结果相近,且优于从L-ISOMAP得到的结果。同时,该算法可以实现对新样本的学习,对噪声也不太敏感。

关 键 词:流形学习  等距特征映射  最速梯度下降  小世界模型  标志点  
收稿时间:2010-05-06
修稿时间:2010-06-10
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号