首页 | 本学科首页   官方微博 | 高级检索  
     


Finite-difference time-domain simulation of scattering from objectsin continuous random media
Authors:Moss  CD Teixeira  FL Yang  YE Jin Au Kong
Affiliation:Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA;
Abstract:A three-dimensional (3D) finite-difference time-domain (FDTD) scheme is introduced to model the scattering from objects in continuous random media. FDTD techniques have been previously applied to scattering from random rough surfaces and randomly placed objects in a homogeneous background, but little has been done to simulate continuous random media with embedded objects where volumetric scattering effects are important. In this work, Monte Carlo analysis is used in conjunction with FDTD to study the scattering from perfectly electrically conducting (PEC) objects embedded in continuous random media. The random medium models under consideration are chosen to be inhomogeneous soils with a spatially fluctuating random permittivities and prescribed correlation functions. The ability of frequency averaging techniques to discriminate objects in this scenarion is also briefly investigated. The simulation scheme described in this work can be adapted and used to help in interpreting the scattered field data from targets in random environments such as geophysical media, biological media, or atmospheric turbulence
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号