首页 | 本学科首页   官方微博 | 高级检索  
     


Mathematical foundations for error estimation in numericalsolutions of integral equations in electromagnetics
Authors:Hsiao  GC Kleinman  RE
Affiliation:Center for the Math. of Waves, Delaware Univ., Newark, DE;
Abstract:The problem of error estimation in the numerical solution of integral equations that arise in electromagnetics is addressed. The direct method (Green's theorem or field approach) and the indirect method (layer ansatz or source approach) lead to well-known integral equations both of the first kind electric field integral equations (EFIE)] and the second kind magnetic field integral equations (MFIE)]. These equations are analyzed systematically in terms of the mapping properties of the integral operators. It is shown how the assumption that field quantities have finite energy leads naturally to describing the mapping properties in appropriate Sobolev spaces. These function spaces are demystified through simple examples which also are used to demonstrate the importance of knowing in which space the given data lives and in which space the solution should be sought. It is further shown how the method of moments (or Galerkin method) is formulated in these function spaces and how residual error can be used to estimate actual error in these spaces. The condition number of all of the impedance matrices that result from discretizing the integral equations, including first kind equations, is shown to be bounded when the elements are computed appropriately. Finally, the consequences of carrying out all computations in the space of square integrable functions, a particularly friendly Sobolev space, are explained
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号